Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 20, 2026
-
Open radio access networks (e.g., O-RAN) facilitate fine-grained control (e.g., near-RT RIC) in next-generation networks, necessitating advanced AI/ML techniques in handling online resource orchestration in real-time. However, existing approaches can hardly adapt to time-evolving network dynamics in network slicing, leading to significant online performance degradation. In this paper, we propose AdaSlicing, a new adaptive network slicing system, to online learn to orchestrate virtual resources while efficiently adapting to continual network dynamics. The AdaSlicing system includes a new soft-isolated RAN virtualization framework and a novel AdaOrch algorithm. We design the AdaOrch algorithm by integrating AI/ML techniques (i.e., Bayesian learning agents) and optimization methods (i.e., the ADMM coordinator). We design the soft-isolated RAN virtualization to improve the virtual resource utilization of slices while assuring the isolation among virtual resources at runtime. We implement AdaSlicing on an O-RAN compliant network testbed by using OpenAirInterface RAN, Open5GS Core, and FlexRIC near-RT RIC, with Ettus USRP B210 SDR. With extensive network experiments, we demonstrate that AdaSlicing substantially outperforms state-of-the-art works with 64.2% cost reduction and 45.5% normalized performance improvement, which verifies its high adaptability, scalability, and assurance.more » « lessFree, publicly-accessible full text available May 22, 2026
-
InSlicing: Interpretable Learning-Assisted Network Slice Configuration in Open Radio Access NetworksFree, publicly-accessible full text available May 19, 2026
-
Free, publicly-accessible full text available December 8, 2025
-
Users on edge generate deep inference requests continuously over time. Mobile/edge devices located near users can undertake the computation of inference locally for users, e.g., the embedded edge device on an autonomous vehicle. Due to limited computing resources on one mobile/edge device, it may be challenging to process the inference requests from users with high throughput. An attractive solution is to (partially) offload the computation to a remote device in the network. In this paper, we examine the existing inference execution solutions across local and remote devices and propose an adaptive scheduler, a BPS scheduler, for continuous deep inference on collaborative edge intelligence. By leveraging data parallel, neurosurgeon, reinforcement learning techniques, BPS can boost the overall inference performance by up to 8.2× over the baseline schedulers. A lightweight compressor, FF, specialized in compressing intermediate output data for neurosurgeon, is proposed and integrated into the BPS scheduler. FF exploits the operating character of convolutional layers and utilizes efficient approximation algorithms. Compared to existing compression methods, FF achieves up to 86.9% lower accuracy loss and up to 83.6% lower latency overhead.more » « less
-
Digital network twin (DNT) is a promising paradigm to replicate real-world cellular networks toward continual assessment, proactive management, and what-if analysis. Existing discussions have been focusing on using only deep learning techniques to build DNTs, which raises widespread concerns regarding their generalization, explainability, and transparency. In this paper, we explore an alternative approach to augment network simulators with context-aware neural agents. The main challenge lies in the non-trivial simulation-to-reality (sim-to-real) discrepancy between offline simulators and real-world networks. To solve the challenge, we propose a new learn-to-bridge algorithm to cost-efficiently bridge the sim-to-real discrepancy in two alternative stages. In the first stage, we select states to query performances in real-world networks by using newly-designed cost-aware Bayesian optimization. In the second stage, we train the neural agent to learn the state context and bridge the probabilistic discrepancy based on Bayesian neural networks (BNN). In addition, we build a small-scale end-to-end network testbed based on OpenAirInterface RAN and Core with USRP B210 and a smartphone, and replicate the network in Network Simulator 3 (NS-3). The evaluation results show that, our proposed solution substantially outperforms existing methods, with more than 92% reduction in the sim-to-real discrepancy.more » « less
-
Network slicing allows mobile network operators to virtualize infrastructures and provide customized slices for supporting various use cases with heterogeneous requirements. Online deep reinforcement learning (DRL) has shown promising potential in solving network problems and eliminating the simulation-to-reality discrepancy. Optimizing cross-domain resources with online DRL is, however, challenging, as the random exploration of DRL violates the service level agreement (SLA) of slices and resource constraints of infrastructures. In this paper, we propose OnSlicing, an online end-to-end network slicing system, to achieve minimal resource usage while satisfying slices' SLA. OnSlicing allows individualized learning for each slice and maintains its SLA by using a novel constraint-aware policy update method and proactive baseline switching mechanism. OnSlicing complies with resource constraints of infrastructures by using a unique design of action modification in slices and parameter coordination in infrastructures. OnSlicing further mitigates the poor performance of online learning during the early learning stage by offline imitating a rule-based solution. Besides, we design four new domain managers to enable dynamic resource configuration in radio access, transport, core, and edge networks, respectively, at a timescale of subseconds. We implement OnSlicing on an end-to-end slicing testbed designed based on OpenAirInterface with both 4G LTE and 5G NR, OpenDayLight SDN platform, and OpenAir-CN core network. The experimental results show that OnSlicing achieves 61.3% usage reduction as compared to the rule-based solution and maintains nearly zero violation (0.06%) throughout the online learning phase. As online learning is converged, OnSlicing reduces 12.5% usage without any violations as compared to the state-of-the-art online DRL solution.more » « less
An official website of the United States government
